# Syllabus of Mathematics Courses 

## in

B. E. Programme

Title of the course
Subject Code
Weekly load
Credit
: ENGINEERING MATHEMATICS
: AMT - 411/AMT-421
$: 4$ Hrs. $\quad$ LTP 3-1-0
: 3 (Lecture 3; Tutorial 0; Practical 0)

Theory

| Unit | Main Topics | Course outlines | Lecture(s) |
| :--- | :--- | :--- | :---: |
| Unit-1 | 1. Differential <br> Calculus | Tracing of Standard Cartesian. Parametric and Polar Curves; <br> Curvature of Cartesian, Parametric and Polar curves. | 9 |
|  | 2. Integral <br> Calculus | Rectification of Standard curves; Areas bounded by standard <br> curves; Volumes and surfaces of revolution of curves; Applications <br> of integral calculus to find centre of gravity and moment of inertia | 9 |
|  | 3. Differential <br> equation | Exact differential equations, Equations reducible to exact form by <br> integrating factors; Solution of linear differential equation of first <br> order- Leibnitz's linear and Bernoulli's equation. Higher order <br> linear differential equation with constant coefficients, <br> complementary function and particular integral. Method of <br> variation of parameters. Cauchy's and Legendre's equations. | 12 |
| Unit-2 | 4.Matrices | Elementary transformations. Row reduced Echelon forms. Rank of <br> a matrix. Normal form. Linearly dependent and independent <br> vectors. System of linear equations. Linear transformations. <br> Eigenvalues and eigenvectors. Properties of eigenvalues. <br> Verification of Cayley-Hamilton Theorem and its use for finding <br> inverse of a matrix. | 10 |

Total $=60$

## Course Outcomes(COs):

Upon completion of this course, the student will be able to:
CO1: Form a differential equation and solve various types of differential equations.
CO2: Understand the concept of convergence of infinite series and discuss the convergence/divergence of a series using different tests.

CO3: Find eigenvalues and eigenvectors of a matrix.
CO4: Understand the concept of linearly independent and dependant vectors.
CO5: Understand the concepts of complex function theory.

| CO/PO Mapping |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (S/M/W indicates strength of correlation ) S - Strong, M - Medium, W - Weak |  |  |  |  |  |  |  |  |  |  |  |  |
| Cos | Programme Outcomes (POs) |  |  |  |  |  |  |  |  |  |  |  |
|  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | S |  |  |  |  |  |  |  |  |  |  |  |
| CO2 | S |  |  |  |  |  |  |  |  |  |  |  |
| CO3 | S |  |  |  |  |  |  |  |  |  |  |  |
| CO4 | S |  |  |  |  |  |  |  |  |  |  |  |
| CO5 | S |  |  |  |  |  |  |  |  |  |  |  |

## Recommended Books:

1. Danial A Murray, Elementary Course in Differential Equations, Longman (1902).
2. E. Kreyszig, Advanced Engineering Mathematics, Wiley Eastern Limited (2010).
3. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill (2006).
4. Peter V.O'Neil, Advanced Engineering Mathematics, CENGAGE Learning (2011) .
5. Gorakh Prasad, Differential Calculus, Pothishala (1968).
6. Gorakh Prasad, Integral Calculus, Pothishala (1961).

Title of the course
Subject Code
Weekly load
Credit
: HIGHER ENGINEERING MATHEMATICS
: AMT - 511/AMT-521
: 4 Hrs. $\quad$ LTP 4-0-0
: 4 (Lecture 4; Tutorial 0; Practical 0)

Theory

| Unit | Main Topics | Course outlines | Lecture(s) |
| :--- | :--- | :--- | :---: |
| Unit-1 | 1. Laplace <br> Transforms | Laplace transforms of elementary functions. Properties of Laplace <br> transform. Transform of derivatives and integrals. Evaluation of <br> integrals by Laplace transforms. Inverse Laplace transforms. <br> Convolution theorem. Solution of ordinary differential equations. <br> Unit step function and unit impulse function. Engineering <br> applications. | 10 |
|  | 2. Fourier Series | Fourier series. Change of interval. Even and odd functions. Half- <br> range series. Applications to typical waveforms including saw- <br> tooth, triangular, sine-wave etc. Parseval's theorem on Fourier <br> constants. | 8 |
|  | 3. Partial |  |  |
| Derivatives | Functions of two or more variables. Partial derivatives. <br> Homogenous functions. Euler's Theorem. Total derivative. <br> Derivative of an implicit function. Tangent and normal to a surface. <br> Change of variables. Jacobian. Taylor's and Maclaurin's series <br> expansions for a function of two variables, maxima and minima. <br> Lagrange's method of undetermined multipliers. Differentiation <br> under integral sign. | 12 |  |
| Unit-2 | 4. Multiple <br> Integrals | Double integral. Change of order of integration. Triple integral. <br> Change of variables. Applications to area and volume. Beta <br> function. Gamma function. Their properties. | 10 |

Total=60

## Course Outcomes(COs):

Upon completion of this course, the student will be able to:
CO1: Understand the concept of Laplace transform and apply it to solve differential equations.
CO2: Study scalar and vector fields and obtain directional derivative.
CO3: Find the area and volume using multiple integral.

CO4: Learn to obtain Fourier series expansion of a function.

| CO/PO Mapping <br> (S/M/W indicates strength of correlation ) S - Strong, M - Medium, W - Weak |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cos | Programme Outcomes (POs) |  |  |  |  |  |  |  |  |  |  |  |
|  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | S |  |  |  |  |  |  |  |  |  |  |  |
| CO2 | S |  |  |  |  |  |  |  |  |  |  |  |
| CO3 | S |  |  |  |  |  |  |  |  |  |  |  |
| CO4 | S |  |  |  |  |  |  |  |  |  |  |  |

## Recommended Books:

1. R.K. Jain and S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Publishing House (2007).
2. G.B. Thomas and R.L. Finney, Calculus: Analytical Geometry, Addison Wesley (2006).
3. E. Kreyszig, Advanced Engineering Mathematics, Wiley Eastern (2010).
4. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw-Hill (2006).
5. Peter V.O'Neil, Advanced Engineering Mathematics, CENGAGE Learning (2011).

Title of the course Subject Code
Weekly load
Credit
: NUMERICAL ANALYSIS
: AMT - 611/AMT -621
$: 4$ Hrs. $\quad$ LTP 3-1-0
: 4 (Lecture 3; Tutorial 1; Practical 0)

Theory

| Unit | Main Topics | Course outlines | Lecture(s) |
| :--- | :--- | :--- | :---: |
| Unit-1 | 1. Errors | Errors in arithmetic operations and functions. Round-off error, <br> truncation error. Absolute error. Relative error. Percentage error. <br> Principles of equal effect. Significant digits. | 6 |
|  | 2. Roots of <br> equations | Intermediate value property. Bisection method. Method of false <br> position. Secant Method. Newton-Raphson method. Iteration <br> method. Convergence of these methods. | 8 |
|  | 3. Solution of <br> linear equations <br> And eigen value <br> problems | Gauss Elimination method (with and without partial pivoting). <br> Jacobi, Gauss-Seidel methods. Triangularization method. <br> Rayleigh's power method for finding dominant eigenvalue. | 8 |
|  | 6. Finite <br> differences and <br> Interpolation | Finite differences-forward, backward and central differences. Shift <br> and averaging operators. Newton's forward, backward and divided <br> difference interpolation formulae. Lagrange's formula. Gauss <br> forward and backward difference interpolation formulae, cubic <br> Spline interpolation. | 8 |

Total $=45$

## Course Outcomes(COs):

Upon completion of this course, the student will be able to:
CO1: Understand the concept of errors in numerical methods.
CO2: Find the roots of equations using different methods and discuss the convergence of the solution.
CO3: Understand the concept of different operators and their applications in solving numerical differentiation and integration.
CO4: Solve numerically ordinary differential equations of first order.

| (S/M/W indicates strength of correlation) $\begin{gathered}\text { CO/PO Mapping } \\ \mathrm{S} \text { - Strong, } \mathrm{M} \text { - Medium, W - Weak }\end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cos | Programme Outcomes (POs) |  |  |  |  |  |  |  |  |  |  |  |
|  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | S |  |  |  |  |  |  |  |  |  |  |  |
| CO2 | S |  |  |  |  |  |  |  |  |  |  |  |
| CO3 | S |  |  |  |  |  |  |  |  |  |  |  |
| CO4 | S |  |  |  |  |  |  |  |  |  |  |  |

## Recommended Books:

1. S.S. Sastry, Introductory Method of Numerical Analysis, PHI (2005).
2. C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, Addison-Wesley (2004).
3. M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computations, New Age International (2007).
4. J.H. Mathew, Numerical Methods for Mathematics, Science and Engineering, PHI (1966).

Title of the course
Subject Code
Weekly load
Credit
: NUMERICAL ANALYSIS LAB
: AMP - 611/AMP -621
$: 2$ Hrs. LTP 0-0-2
: 1 (Lecture 0; Tutorial 0; Practical 1)

## List of Programmes

1. Finding roots of the equation $f(x)=0$ using
i) Bisection Method
ii) Secant Method
iii) Method of false position
2. Finding roots of the equation $f(x)=0$ using
i) Iterative Method ii) Newton - Raphson's Method
3. To check consistency and finding Solution of a system of linear algebraic equations using
i) Gauss elimination Method ii) Gauss - Seidal Method iii) Jacobi Method
4. Solution of a system of linear equations by triangularization method.
5. Finding dominating Eigen value and Eigen vector using Rayleigh's power Method.
6. Interpolation using
i) Newton's forward difference formula ii) Newton's backward difference formula
7. Interpolation using
i) Newton's divided difference formula ii) Lagrange's interpolation formula
8. Interpolation using
i) Gauss's forward formula ii) Gauss's backward difference formula
9. Interpolation using Splines
i) Linear
ii) Quadratic
iii) Cubic
10. Numerical differentiation using
i) Newton's forward interpolation formula ii) Newton's backward interpolation formula
11. Numerical Integration using
i) Trapezoidal rule ii) Simpson's $1 / 3^{\text {rd }}$ rule
iii) Simpson's $3 / 8^{\text {th }}$ rule
iv) Romberg's rule
12. Solution of $\mathrm{I}^{\text {st }}$ order ordinary differential equations using
i) Taylor's series method
ii) Picard's method
iii) Euler's method
iv) Euler's modified method
13. Solution of $\mathrm{I}^{\text {st }}$ order ordinary differential equations using
i) Runge-Kutta method of $\mathrm{III}^{\text {rd }}$ order
ii) Runge-Kutta method of $\mathrm{IV}^{\text {th }}$ order

Course Outcome: After the completion of this course, the student will be able to write a program in C/C++ and :

CO1: Solve nonlinear equations and system of linear equations.

CO 2 : Find largest eigen value of a square matrix.
CO3: Use various interpolation formulae.
CO4: Find numerical differentiation and integration.
CO5: Solve numerically by using various techniques.

| COs | Programme Outcomes (POs) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO2 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO3 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO4 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO5 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |


| Title of the course | $:$ ADVANCED MATHEMATICS |  |  |
| :--- | :--- | :--- | :--- |
| Subject Code | $:$ AMO -621 | LTP | $3-0-0$ |
| Weekly load | $: 3$ Hrs. |  |  |
| Credit | $: 3$ (Lecture 3; Tutorial 0; Practical 0) |  |  |

## Theory

| Unit | Main Topics | Course outlines | Lecture(s) |
| :--- | :--- | :--- | :---: |
| Unit-1 | 1. Complex <br> Integration | Review of analytic function and its properties, Line integral, <br> Cauchy's theorem (proof using Green's Theorem) Cauchy's <br> integral formula. Morera's theorem, Cauchy's inequality, Poisson's <br> integral formulae. | 8 |
|  | 2. Theory of <br> Residues | Power series. Taylor's and Laurent's series, Singularities. Zeros. <br> Residues. Cauchy's residue theorem. | 6 |
|  | 3.Application to <br> Real Integrals | Integration around unit circle. Integration over semi-circular <br> contours (with and without real poles). Integration over rectangular <br> contours. | 8 |
| Unit-2 | 4. Fourier <br> Transforms | Integral transforms. Fourier integral theorem. Fourier sine and <br> cosine integrals. Fourier transforms. Properties of Fourier <br> transforms. Convolution theorem for Fourier transforms. | 8 |
|  | 5. Z-Transforms | Z transforms and its properties. Z transform of polynomial <br> functions, trigonometric functions and hyperbolic functions. <br> Convolution theorem. Inverse Z-transform. | 7 |

## Course Outcomes(COs):

Upon completion of this course, the student will be able to:
CO1: Evaluate complex contour integrals and apply the Cauchy integral theorem in its various versions, and the Cauchy integral formula.
CO 2: Expand complex function in Laurent series.
CO3: Apply the residue theory for the evaluation of real integrals.
CO4: Learn Fourier transforms and their application to solution of partial differential equations.
CO5: Have a thorough knowledge of Z-transform.

| COs | Programme Outcomes (POs) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO 2 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO3 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO4 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO5 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |

## Recommended Books:

1. R.K. Jain and S.R.K. lyengar, Advanced Engg. Mathematics, Narosa Publishing House (2007).
2. B.V. Ramana, Higher Engineering Mathematics, Tata McGraw Hill (2006).
3. R.V. Churchill and I.W. Brown, Complex Variables and applications, Tata McGraw Hill (2008).
4. Michael D Greenberg, Advanced Engg. Mathematics, Pearson (1998).

Title of the course
Subject Code
Weekly load
Credit
: STATISTICAL TECHNIQUES
: AMO - 711
: 3 Hrs. LTP 3-0-0
: 3 (Lecture 3; Tutorial 0; Practical 0)

Theory

| Unit | Main Topics | Course outlines | Lecture(s) |
| :--- | :--- | :--- | :---: |
| Unit-1 | Correlation and <br> Regression | Karl-Pearson coefficient of correlation and rank correlation. Partial <br> and multiple correlation (three variables case only). Regression <br> Analysis using two variables. | 8 |
|  | Probability | Axiomatic definition of probability. Baye's theorem, Random <br> variables. Probability mass function and probability density <br> function. Probability distribution function. Mathematical <br> Expectation. | 7 |
| Unit-2 | Sampling | Probability <br> distributions | Probability distributions - Binomial, Poisson and Normal <br> distributions and their applications. <br> and Probability proportional to size sampling. systematic sampling |

Total $=45$

## Course Outcomes(COs):

Upon completion of this course, the student will be able to:
CO1: Understand concept of correlation and regression.
CO2: Compute the probability of events.
CO3: Understand the random variable, expectation and distributions.
CO4: Understand the concept of sampling and sampling distribution.
CO5: Understand testing of hypothesis based on small and large samples.

| COs | Programme Outcomes (POs) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO2 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO3 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO4 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO5 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |

## Recommended Books:

1. S.P. Gupta, Statistical Methods, Sultan Chand \& Co. (2009).
2. A. M. Goon, M. K. Gupta and B. Dasgupta, An Outline of Statistical Theory, Vol. I , World Press Pvt. Ltd (2013).
3. S.C. Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics, S. Chand \& Co. (2014).

Note: The students who have the contents of this course in their curriculum, are not allowed to opt for this course.

Title of the course : OPERATIONS RESEARCH

Subject Code
Weekly load
Credit
: AMO - 721
: 3 Hrs.
LTP 3-0-0
: 3 (Lecture 3; Tutorial 0; Practical 0)

## Theory

| Unit |  | Course outlines | Lecture(s) |
| :--- | :--- | :--- | :---: |
| Unit-1 | Linear <br> Programming <br> Problem(LPP) | Basic concepts and notations of LPP. Mathematical formulation of <br> LPP, Graphical solution. Spanning set, basis, replacing a vector in <br> a basis, Basic solution and Basic Feasible Solutions (BFS) of <br> system of linear equations, BFS by using Gauss-Jordan elimination <br> process. Hyperplane, hypersurfaces, convex sets and their <br> properties, convex functions. Extreme points, Standard form of an <br> LPP | 8 |
|  | Simplex Method | Fundamental theorem. Reduction of Feasible Solution to BFS. <br> Standard format of Simplex method. Two phase method. Big M <br> method. Degeneracy. Nature of the solution of LPP through <br> simplex method | 8 |
|  |  | Duality theory in <br> LPP | Primal and Dual problem. Duality theory, Complimentary <br> Slackness Conditions (CSC), Solution of primal and Dual and vice <br> versa. Dual Simplex |
| Unit-2 | Post-optimality <br> analysis | Post-optimality analysis, changes in cost vector, changes in right <br> hand side vector, introducing an additional variable, introducing an <br> additional inequality constraint or equality constraint. Parametric <br> analysis of objective function and right hand side vector. Sensitivity <br> analysis of objective function and right hand side vector | 8 |
|  | Transportation <br> Problem | Basic concepts and notations of transportation problem, Balanced <br> and unbalanced transportation problems. Initial BFS of TP using <br> north-west corner rule, Matrix Minima method and Vogel's <br> approximation method. Optimal solutions | 7 |
|  | Assignment <br> problem | Assignment problem. Balanced and unbalanced Assignment <br> problems. Hungarian method to solve assignment problem. Post <br> optimality analysis of Transportation and Assignment problem | 7 |

Total=45

## Course Outcomes (COs):

Upon completion of this course, the student will be able to:
CO1: Formulate some real life problems into LPP.
CO2: Use the simplex method to find an optimal BFS for the standard LPP and the corresponding Dual problem.
CO3: Use duality theory and CSC to prove the optimality of a given feasible solution.

CO4: Formulate an optimal solution of transportation problem.
CO5: Formulate solution of an assignment problem.

| COs | Programme Outcomes (POs) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO2 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO3 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO 4 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO5 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |

## Recommended Books:

1. J. G. Chakravorty and P. R. Ghosh, Linear Programming and game Theory, Moulik Library (1991).
2. S. K. Gupta, Linear Programming \& Network Models, Affiliated East-West Private Ltd. (1985).
3. H.A. Taha, Operations Research, PHI (2007).
4. A. Ravindran, D. T. Phillips and J. J. Solberg, Operation Research: Principles \& Practice, John Wiley \& Sons (1987).
5. S.S. Rao, Operations Research, Wiley (1978).
6. M. S. Bazaarra, J. J. Jarvis and H. D. Shirali, Nonlinear Programming, John Wiley \& Sons (1990).
7. H. S. Kasana and K. D. Kumar, Introductory Operations Research, Springer Verlag (2005).

Note: The students, who have the contents of this course in their curriculum, are not allowed to opt for this course.

Title of the course Subject Code
Weekly load
Credit
: DISRETE MATHEMATICS
: AMO - $\mathbf{7 2 2}$
: 3 Hrs.
: 3 (Lecture 3; Tutorial 0; Practical 0)

LTP 3-0-0

Theory

| Unit | Main Topics | Course outlines | Lecture(s) |
| :--- | :--- | :--- | :---: |
| Unit-1 | 1. Logic | Mathematical Logic: Statement and notations, proposition <br> and logic operations, connectives (conjunction, disjunction, <br> negation), Tautology and contradiction, equivalence of <br> formulae and implication laws of logic. | 8 |
|  | 2. Theory of <br> Inference | Mathematical systems, propositions over a universe, <br> Validity using truth table, rules od inference, consistency of <br> premises and indirect method of proof, principal of <br> mathematical induction, variables, quantifiers, Inference of <br> predicate calculus. | 8 |
|  | 3. Relations and <br> functions | Relation and Function: Binary relations, Properties of binary <br> relation in a set, Equivalence relations, Composition of <br> binary relations. Function and Pigeon hole Principle.. | 7 |
|  | 4. Recurrence <br> relations | Recurrence relations, common recurrence relations, <br> generating functions and their solutions. | 5 |
|  | 5. Boolean <br> algebra | Boolean algebra, Boolean functions and Boolean expressions, <br> simplifications of Boolean expressions, Basic circuits and <br> theorems, Logical gates and relations of Boolean functions. | 6 |
|  | 6.Graph Theory | Basic terminology of graph theory, Paths, Circuits, Graph <br> connectivity, Eulerian paths, Multigraphs, Weighted graphs. | 11 |

Total=45

## Course Outcomes(COs):

Upon completion of this course, the student will be able to:
CO1: Construct mathematical arguments using logical connectives and quantifiers.
CO2: Validate the correctness of an argument using statement and predicate calculus.
CO3: Understand how lattices and Boolean algebra are used as tools and mathematical models in the study of networks.
CO4: Learn how to work with some of the discrete structures which include sets, relations, functions, graphs and recurrence relations.
CO5: Have a knowledge of Graph theory and its applications in various real life problems.

| COs | Programme Outcomes (POs) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO2 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO3 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO4 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
| CO5 | 3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |

## Recommended Books:

1. J. P. Trembley and R. Manohar, A First Course in Discrete Structure with applications to Computer Science, Tata McGraw-Hill (1999).
2. M. K. Das, Discrete Mathematical Structures, Narosa Publishing House (2007).
3. Babu Ram, Discrete Mathematics, Vinayak Publications (2004).
4. C. L. Liu, Elements of Discrete Mathematics, Tata McGraw-Hill (1978).
